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MIIDAPS-AI: An Explainable Machine-Learning
Algorithm for Infrared and Microwave Remote
Sensing and Data Assimilation Preprocessing -

Application to LEO and GEO Sensors

Eric S. Maddy

Abstract—In this article, we leverage and apply state-of-the-art
artificial intelligence (AI) techniques to satellite remote sensing
of temperature, moisture, surface, and cloud parameters in all-
weather, all-surface conditions, from both microwave and infrared
sensors. The multi-instrument inversion and data assimilation pre-
processing system, artificial intelligence version, or MIIDAPS-AI
for short, is valid for both polar and geostationary microwave and
infrared sounders and imagers as well as for pairs of combined
infrared and microwave sounders. The algorithm produces vertical
profiles of temperature and moisture as well as surface tempera-
ture, surface emissivity, and cloud parameters. Additional products
from hyperspectral infrared sensors include selected trace gases.
From microwave sensors, additional products such as rainfall rate,
first year/multiyear sea ice concentration, and soil moisture can
be derived from primary products. The MIIDAPS-AI algorithm is
highly efficient with no noticeable decrease in accuracy compared
to traditional operational sounding algorithms. The automatically
generated Jacobians from this deep-learning algorithm could pro-
vide an explainability mechanism to build trustworthiness in the
algorithm, and to quantify uncertainties of the algorithm’s outputs.
The computation gain is estimated to be two orders of magnitude,
which opens the door to either 1) process massively larger amounts
of satellite data, or to 2) offer improvements in timeliness and
significant saving in computing power (and therefore cost) if the
same amount of data is processed. Here, we present an overview
of the MIIDAPS-AI implementation, discuss its applicability to
various sensors and provide an initial performance assessment for
a select number of sensors and geophysical parameters.

Index Terms—Artificial Intelligence (AI), atmosphere, earth
observing system, machine learning, neural networks, remote
sensing, satellite.
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I. INTRODUCTION

HE multi-instrument inversion and data assimilation pre-

processing system-artificial Intelligence (MIIDAPS-AI)
leverages modern artificial intelligence (AI) techniques in re-
mote sensing to efficiently emulate traditional remote sensing
algorithms such as the microwave integrated retrieval system
(MiRS) [1], [2] for microwave sensors or the NOAA Unique
CrIS/ATMS Processing System (NUCAPS) [3], [4] for infrared
sensors. This is important because data volumes are growing
quickly for a number of reasons including 1) the imminent
dawn of an era of small Earth observation satellites (smallsats
and cubesats) with the potential to significantly increase the
challenge of processing larger volumes of data, 2) an increase
in the number of satellites being deployed by an increasing
number of international partners, and 3) an increase in new
sensors capabilities to measure the environment at higher spa-
tial, temporal, and spectral resolutions[5], [6]. Neural networks
techniques have been used for decades in remote sensing [7], [8].
Essentially, neural network algorithms, as well as new Al and/or
machine learning (ML) techniques, offer a way to approximate
any function be it linear or nonlinear without any presumptions
on its inputs errors characteristics.

The timing of the MIIDAPS-AI development however lever-
ages the extraordinary progress made recently in the field of
Al and specifically ML. This progress is in terms of 1) the
significant increase in availability of Al-specific compute nodes
[i.e., Graphical Processing Units (GPUs) using Compute Unified
Device Architecture (CUDA)], 2) ease of use of high-level lan-
guages to develop AI/ML algorithms (such as Keras/Tensorflow
[9] and PyTorch), and 3) ability to easily develop deep-learning
algorithms that can handle more sophisticated activation func-
tions and input types. MIIDAPS-ALI is therefore a new gener-
ation, enterprise remote sensing algorithm, based on modern
Al and ML techniques, with capability to infer a number of
geophysical products from a number of space-borne sensors. As
an extension of traditional 1D variational approaches such as the
MiRS (and its extension to IR satellite observations, MIIDAPS),
MIIDAPS-AI can be applied to Infrared (IR) and Microwave
(MW) polar and GEO sounders and imagers and is valid for
any sensor with valid Community Radiative Transfer Model
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Fig. 1.

Flow diagram for the MIIDAPS-ALI retrieval algorithm. Algorithm inputs (blue) pass through several trainable fully connected dense layers (green) to

produce outputs (orange). Untrainable layers which concatenate features at various depths in the algorithm flow (grey) are also shown. See text for a more detailed

description of algorithm inputs and outputs.

(CRTM) coefficients [10]. MIIDAPS-AI can additionally serve
as a preprocessor for data assimilation and data fusion [11].

The rest of this article is organized as follows. Section II
describes the theoretical basis and implementation of MIIDAPS-
Al Section III, provides an overview of MIIDAPS-AI prod-
ucts and valid sensors. Statistical assessments of MIIDAPS-AI
products versus NWP models, radiosondes, traditional remote
sensing algorithms are shown in Section IV. Section V discusses
the interpretability and trustworthiness of MIIDAPS-AL

II. THEORY AND IMPLEMENTATION

Fundamentally, MIIDAPS-Al s a deep fully connected neural
network that defines a nonlinear mapping between instrument
measurements (IR radiances or MW brightness temperatures)
and geophysical parameters such as temperature and moisture
profiles, integrated cloud parameters [including cloud liquid wa-
ter (CLW) and ice water path IWP)], spectral surface emissivi-
ties as well as bias corrections between observations and scenes
simulated using the CRTM. The MIIDAPS-AI network architec-
ture (units, layers, etc.) varies based on instrument or instrument
combination but the general architecture is shown in Fig. 1.
For a given sensor, MIIDAPS-ALI is trained to find a functional
mapping, fy, between observations, y and desired geophysical
parameters x, ie,r = fg (y), where 0 are parameters deter-
mined offline using millions of training samples pairs. These

samples consist of colocated instrument measurements, numer-
ical weather prediction (NWP) fields (e.g., from the National
Oceanic and Atmospheric Adminstration’s (NOAA’s) Global
Data Assimilation System (GDAS), or the European Centre for
Medium-range Weather Forecasting’s (ECMWEF’s) Reanalysis
(ERAS5)[12]) spatially (bilinear) and temporally interpolated
to the observation locations, surface spectral emissivity, and
CRTM simulations using those geophysical fields. Over land and
for microwave instruments, the Tool to Estimate Land Surface
Emissivities at Microwave frequencies (TELSEM) model is
used to analytically calculate the emissivities for all surfaces
using NWP data collocated with satellite brightness tempera-
tures [13], while over ocean, the FAST microwave Emissivity
Model (FASTEM) model [14] is used to prescribe emissivity.
For infrared instruments, the University of Wisconsin Baseline
Fit Emissivity Database [15] is used to prescribe emissivity over
land and the surface-leaving radiance model developed in [16]
is used over ocean.

Multiple years and seasons, diverse surface types, geographic
coverage, and all-weather conditions are included in the training
sample such that the relationships determined are representative
of all cases. For instance, at least two years of data with a
minimum of eight days in each year and covering each of
the four seasons are first selected. Data are first selected for
each day by randomly subsampling the full day of quality
controlled (basic QC flags) observations by a factor five. A
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second pass is then performed on each day to ensure that
each 10 degree by 10 degree latitude/longitude box contains
at least one observation. The dataset is then split into two parts
(one-fold cross-validation) by selecting chronologically the first
80% for training and last 20% for testing (selection of best
weights). In our initial testing of MIIDAPS-AI performances,
we found networks optimized with an 80/20 training/testing
split performed better for generalization tasks (validation on
samples not seen during training/testing). Optimization of in-
ternal network parameters or weights is performed using the
Python implementation of the Keras deep learning software [9]
and the Adam optimizer. The weights corresponding to the epoch
with the best (smallest) validation loss on the testing samples is
selected out of a maximum number of epochs (usually between
200 and 1000 and depending on the instrument). In addition,
an offline optimization of network hyperparameters (network
architectures, layers/nodes) is performed for each instrument
using a coarse grid search over network layers (linearly between
2 to 4) and nodes (logarithmically between 32 and 1024) and
using a 20% (random subsample) of both the full training and
testing datasets. We have found that in general similar optimized
network hyperparameters are obtained for similar instruments
[e.g., MW sounders such as the Advanced Microwave Sounding
Unit/Microwave Humidity Sounder (AMSU/MHS) pair and the
Advanced Technology Microwave Sounder (ATMS)].

As mentioned above, the algorithm produces not only geo-
physical parameters, but also spectral radiative bias corrections
between observations and outputs. These bias corrections are
included in the optimization for several reasons: 1) to account for
possible differences between “true” geophysical state observed
by the instrument and prescribed geophysical state from NWP
models, and 2) to account for any instrument (or forward model)
biases. This allows the system to determine the air-mass depen-
dent bias on an individual case basis, as opposed to applying
a wide-ranging bias correction computed offline statistically.
This is similar in principle to the variational bias correction
used in NWP where the bias is computed on the fly—on an
individual case basis—using multiple predictors [17]. While
bias corrections are estimated by the network over all surfaces,
unlike other parameters, the bias correction is trained with a
custom loss function, which masks losses (sets to zero) over
nonocean. Therefore, the network weights determined during
optimization are constrained only by biases computed for ocean
surfaces. This is because we would expect models described in
[14], [16] to agree better with actual sea surface emissivities and
therefore expect a better agreement between CRTM simulations
and real IR and MW observations.

A. MIIDAPS-AI Network Structure

Fig. 1 shows an example of the general neural network ar-
chitecture and flow of MIIDAPS-AI Inputs to the algorithm
are shown in blue and include radiometric observations (IR
radiances or MW brightness temperatures) as well as ancillary
information such as instrument view/solar angle (or secant),
forecast surface pressure and categorical variables such as sur-
face type (one-hot encoded in ML language). Outputs from the
algorithm are shown in orange and include cloud parameters,
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spectrally resolved emissivity, surface temperature and profiles
of temperature and moisture, and a bias correction as described
above. Dense/fully connected trainable layers whose weights
and biases are optimized during training are shown in green
and are either single layers or stacks of several hidden layers
as shown in the center of the diagram before the main output
layers. Those dense layers have between 64 and 1024 nodes,
the actual number depending on the instrument, and utilize the
Rectified Linear Unit (ReLU) activation. Concatenate layers are
shown in gray and indicate a linking of all the outputs from the
preceding layers in the network to the inputs to the following
layer. In general, arrows in the figure indicate layers that are
directly connected. Arrows from the stacks of dense layers in
the middle of the architecture and bypassing the main outputs of
cloud, emissivity, and atmosphere are skip connections, which
help avoid the vanishing gradient problem typically seen in
deep neural networks [18] and help preserve input information
encoded in preceding layers to produce the bias correction
outputs.

III. MIIDAPS-AI APPLICABILITY

MIIDAPS-ALlis an enterprise algorithm, i.e., an algorithm that
extracts the maximum information content from data measured
by a wide range of sensor types. MIIDAPS-AI generates several
geophysical parameters from a number of sensors (or sensor
pairs), as described in Table I. In principle, an instance of
MIIDAPS-ALI could be generated for any sensor for which the
CRTM model or other forward model can be used to simulate the
sensor; however, in practice, algorithms have been produced and
tested on a smaller set of polar and GEO infrared and microwave
imagers and sounders. In addition to real operational sensors
currently flying, MIIDAPS-AI has been applied to emerging
technologies and hypothetical sensors (esp. smallsats and cube-
sats) to assess the value of those sensors to infer information
about the atmosphere and surface. This enables assessment of
the performances we should expect from these proposed sensors.

Table I thus lists the current sensors for which MIIDAPS-
Al has been validated and also describes the geophysical
capability of those sensors. See the caption in Table I for
the color coding indicating, which sensor(s) and which geo-
physical parameters MIIDAPS-AI has been applied to, tested
and/or validated for. Rows in the column correspond to po-
lar microwave instruments (AMSU/MHS, ATMS, Micro-sized
Microwave Atmospheric Satellite (MICROMAS), and Earth
Observing Nanosatellite-Microwave (EON-MW)) and infrared
(Cross-track Infrared Sounder (CrIS), CubeSat Infrared Atmo-
spheric Sounder (CIRAS)) sounders as well as geostationary
imagers [Advanced Baseline Imager (ABI)].

IV. QUALITATIVE AND QUANTITATIVE ASSESSMENT OF
MIIDAPS-AI PERFORMANCE

In this section, we highlight selected examples from our
comprehensive assessment of MIIDAPS-AI applied to all the
sensors and associated generated products listed in Table I. Note
that additional validation datasets will also be employed in future
performance assessments.
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TABLE I
LIST OF PARAMETERS (IN THE COLUMNS) THAT MIIDAPS-AI GENERATES WHEN APPLIED TO THE MICROWAVE AND INFRARED SENSORS
FROM BOTH GEO AND LEO PLATFORMS LISTED IN THE ROWS

MIIDAPS-AI Sensor and Product Capabilities

T(p) H20(p) [ SST/LST TPW Cld/Ice

Amt

Cld/Ice
Top

Trace Gas Bias Correction

Amt

Precip Sfc Cryosphere

Emis

L72 Hybrid- Total
Sigma

101 MIRS Levels

Pressure RR

Total, SIC, MYSIC CO, CO,,

FYSIC 0,

Spectral Spectd

NOAA-18
AMSU/MHS

MetOp-A/B
AMSU/MHS

S-NPP ATMS
S-NPP CriS
GOES-16 ABI
NOAA-20 ATMS
NOAA-20 CrlS

NOAA-20
CrIS/ATMS

MICROMAS
CIRAS

EON-MW

NN

N\

Validated Applicable butno

algorithm

Preliminary Validated
(Research)

Not Applicable

Note: The sensors are stratified by operational and proposed/research types (top and bottom section respectively). This table shows the applicability of
MIIDAPS-ALI and what it has been tested for. The color coding refers to the degree of confidence we have in the validity of the MIIDAPS-AI capability
and is highlighted in the bottom of the table: green for fully validated, Dotted green for preliminarily validated. When a sensor is not capable of retrieving
a parameter, the cell is colored gray. Yellow indicates that the sensor has some sensitivity to the parameter (i.e., some nominal information content exists),
but no capability has yet been demonstrated. Left hashed green line indicates that the sensor is known to have the capability but MIIDAPS-AI has not been
generated yet for this sensor/parameter pair. Columns in the table correspond to: atmospheric parameters - temperature, T(p) and moisture, H2O(p), profiles,
sea surface/land temperature (SST/LST), TPW; cloud and precipitation parameters - cloud liquid/ice amount (CLD/ICE AMT), cloud top pressure of cloud
liquid and ice (CLD/ICE TOP), precipitation (Precip) rain rate (RR); surface parameters - spectral emissivity (SFC EMIS), total sea ice concentration (SIC),
multi and first year SIC (MYSIC, FYSIC); chemistry parameters - trace gas tropospheric column amounts (CO2, CO, CH4 AMT); and radiometric parameters

- spectral bias correction.

A. Visual Assessment of MIIDAPS-AI Product Suite From
Multiple Sensors

Fig. 2 shows a visual assessment of some geophysical prod-
ucts generated by MIIDAPS-AI from a select number of sensors.
These products and sensors include total precipitable water
(TPW) from SNPP/ATMS, IWP and CLW from NOAA-18
AMSU/MHS pair, Carbon Monoxide (CO) in the atmosphere
from the CrIS sensor onboard NOAA-20 satellite, the emis-
sivity at channel 1 (23GHz) from SNPP/ATMS, Liquid Cloud
Top Pressure from GOES-16 ABI, sea ice concentration (SIC)
from NOAA-20/ATMS and finally Skin temperature from the
CrIS/ATMS pair onboard NOAA-20.

B. Quantitative Assessment of MIIDAPS-AI Versus NWP and
Operational Algorithms

To illustrate an example of the performances of MIIDAPS-
Al, quantitatively, using microwave and infrared sensors,
we compare in Fig. 3, the retrieval of the TPW, and the

temperature and moisture profiles, as generated by the
MIIDAPS-AI algorithm, for April 7, 2019, to the ECMWF
analysis for the same period. These retrievals use real data from
JPSS ATMS and CrIS sounders. We also include in Fig. 3
the statistical performances of these retrievals and compare
them to those obtained by operational algorithms as a point of
reference. What Fig. 3 mainly shows is that the MIIDAPS-AI
performances for temperature and moisture profiling, are overall
comparable to those of operational algorithms, in this case
NUCAPS.

In addition, MIIDAPS-ALI is at least two orders of magnitude
more computationally efficient. It can for instance process 720
days of ATMS microwave data as opposed to 3.6 days by
MiRS or 400 days of CrlIS infrared data as compared to 3.9
days by NUCAPS in one wall-clock day of computing using
the exact same computing resource. From these considerations,
we can say that MIIDAS-AI’s main advantage is the great
efficiency gain achieved with little noticeable degradation in per-
formance. It is worth noting that the algorithm was trained using
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and/or GEO platforms. See text for details.

15 days’ worth of ECMWF and JPSS ATMS and CrIS co-
locations covering two years and multiple seasons.

C. Spatial Variability and Interparameters Correlation
Assessment

Additionally, the fields of moisture and temperature obtained
by MIIDAPS-AI were assessed in terms of their spatial variabil-
ity and interparameter correlation structure. These assessments
demonstrate that the fields of geophysical parameters deter-
mined by MIIDAPS-AI are geographically consistent in terms
of their spatial variability (see Fig. 4) and that the calculated
geophysical state vector is self-consistent (see Fig. 5).

This assessment of the spatial and interparameters consisten-
cies is as important as assessing the performances in terms of
accuracy and precision. To assess spatial consistency, ECMWF
and MIIDAPS-AT retrievals are first colocated. The two datasets
are then spatially averaged ontoa 1 x 1 degree latitude/longitude
grid and a spectral decomposition is performed. The power
spectrum of the coefficients of each is plotted for several lay-
ers and for temperature and moisture. Fig. 4 shows that the
variability of the MIIDAPS-AI temperature field is consistent
with that of ECMWE, for the different layers assessed, which
correspond to 925, 750, and 250 mb. The solid and the dashed
lines are indeed almost on top of each other except at the
short wavelengths. For the moisture spatial variability, Fig. 4
indicates that the variability is also mostly consistent between
the ECMWEF field and MIIDAPS-AI generated field of humidity.
Differences at smaller spatial scales is somewhat expected given
that the NWP field is an analysis that is bound to smooth the
high-frequency features, while MIIDAPS-AI inversions, since

67

Sea Ice Concentration, [%]

(@

Tlustrations of examples of geophysical parameters generated by MIIDAPS-ALI from a select number of sensors, both microwave and Infrared, from LEO

they are based exclusively on real observations, capture the
higher-frequency features of spatial variability that occur in
reality.

Fig. 5 shows that the parameters inverted by MIIDAPS-ALI, at
least those assessed here, namely atmospheric temperature and
moisture profiles, along with skin temperature, are correlated to
each other in roughly the same manner as these parameters are
found to be correlated in the NWP field of ECMWF. As would
be expected from an inversion of atmospheric profiles from
a MW/IR sounder with finite vertical resolution, the structure
of the vertical correlation of MIIDAPS-AI temperature and
moisture is similar, but shows some differences as compared
to ECMWEF (e.g., in the temperature/moisture correlation block
in Fig. 5).

The combination of the assessments of the MIIDAPS-AI
inversions, in terms of precision and accuracy (see Fig. 3),
spatial variability (see Fig. 4), and interparameters correlations
(see Fig. 5), demonstrates the good performance and statistical
consistency of MIIDAPS-AL In the next sections, we 1) perform
an independent assessment of the MIIDAPS-AI system (by an
independent team and using a different and an independent set)
and 2) assess whether we can trust the outcome of MIIDAPS-AI
on an individual retrieval basis.

D. Independent Assessment of MIIDAPS-AI Versus
Radiosondes

In the previous section, we focused on developing and testing
the MIIDAPS-AT algorithm using NWP models. In this section,
we present the results obtained from an independent assessment
of the performances of MIIDAPS-Al—over a different time
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period, using a different reference data type (radiosondes), and
performed independently by a different team.

Fig. 6 shows statistical assessments of 12 days of colocated
MIIDAPS-AI and NUCAPS using operationally launched ra-
diosondes as a reference. This independent assessment was per-
formed by the NOAA Products Validation System (NPROVS)
[19] using their software for retrieval/radiosonde colocation,
statistical computation, and QC. We note that due to the rel-
ative difference in vertical resolution of radiosonde and satellite
measurements/retrievals, a rigorous assessment should account
for the averaging kernels of both NUCAPS and MIIDAPS-AI
(e.g.,[20],[21]) however, that comparison will be left for a future
publication.

To provide insight into the complexity of scenes assessed,
the comparison statistics are computed using two QC schemes
- panels (a) and (b) include cases, where NUCAPS combined
IR+MW retrievals converged, while for panels (c) and (d), for
cases where the IR+MW failed and if the MW-only retrieval was
successful, those MW-only retrievals were included. NUCAPS
utilizes a technique known as cloud-clearing to enable sounding
in partially cloudy scenes and the main reason the IR+-MW
algorithm fails to converge is a failure of the cloud-clearing
algorithm (i.e., cloudier or scenes which violate cloud-clearing
assumptions).

Generally speaking, the results are consistent with global
comparison to ECMWF even though radiosondes observations
are less spatially uniform and are mostly land cases. Compared
to NUCAPS, MIIDAPS-ALI retrievals retrieval performance is
similar in the top and bottom panels and suggest MIIDAPS-
Al performance is not a strong function of cloudiness, while
NUCAPS IR+MW QC removes more difficult cases. For both
QC schemes and for temperature and moisture, MIIDAPS-AI

provides similar sounding performance to NUCAPS above 700
hPa and somewhat improved skill near the surface.

V. MODEL INTERPRETATION AND VISUALIZATION FOR
UNDERSTANDING AND TRANSPARENCY

Ideally, we would like to ensure that the ML-based algorithms
are performing well, statistically and on an individual retrieval
basis. We also would like to ensure that the results are generating
the right answer for the right reasons. In other words, we should
be able to explain the results or at least have access to a metric,
generated along with the individual retrieval itself, that supports
our trust in the results. In this study, we explore using the
ML Jacobians, generated automatically while developing the
MIIDAPS-AI retrieval algorithm itself, to explain the results.

A. Sensitivity of MIIDAPS-AI to Radiometric Observations

In Fig. 7 above, daily ML based MIIDAPS-AI Jacobians (of
temperature with respect to the channel brightness tempera-
tures), based on MIIDAPS-AI applied to ATMS, were averaged
over a single day. This result shows that the ML Jacobians are
overall consistent with the expectation that the information that
led to the temperature retrieval, at a certain layer, originates
from channels that peak at those layers. For example, channels
labeled 0, 1,2, 3,4, and 5 corresponding to (23, 31.4, 50.3,51.76,
52.8GHz frequencies) are sensitive to the surface mainly and the
lower troposphere. Channels labeled 6 through 13 are known to
be sensitive to higher tropospheric and stratospheric layers and
results of this MIIDAPS-AI ML Jacobian is consistent with this.
Channels 15 through 21 are either surface sensitive channels
or atmospheric moisture sounding channels and therefore have
their sensitivity peak at the lower layers, consistent with the
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Fig. 6.

Bias (solid) and RMSE (dashed) statistics computed using all operational radiosondes (July 31,2019-August 11,2019) as a reference for NUCAPS and

MIIDAPS-AI for NOAA-20. (a) Temperature and (b) moisture statistics of MIIDAPS-AI combined CrIS/ATMS and NUCAPS (IR+MW QC = 0) for operational
radiosondes. (c) and (d) These same statistics computed using NUCAPS QC (IR+MW QC = 0 or MW-only QC = 0). Bottom vertical bars on the water vapor
panels show the TPW vapor bias and RMSE. Sample size is shown on the right of each panel. See text for more details.
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findings in Fig. 7. This builds confidence that the performances
obtained statistically shown in the previous section, are anchored
in a physically based sensitivity of the temperature to the ap-
propriate sensor’s channels. In other words, that the algorithm
is performing well for the appropriate reasons: appropriate

sensitivities of observations -brightness temperatures- to the
appropriate layers in the atmosphere.

B. Error Quantification

An important feature of the Bayesian physical retrieval
methodology is the ability to estimate the a posteriori uncertainty
of the resultant retrieval. This can be very useful for users when
using the retrievals for their applications. Can MIIDAPS-AI do
the same?

We propose two ways of predicting the errors of MIIDAPS-AI
individual retrievals due to random noise. In the next Figure,
we assess these two approaches and compare them to the true
errors, obtained by simply comparing the retrievals to the true
state of the environment. This is done using simulated data to
know exactly the truth and therefore the true errors. These two
approaches are described as follows.

1) Nonlinear Monte Carlo Error Estimation Approach: In
this approach, we take advantage of the fact that MIIDAPS-AI
is very efficient and, therefore, we can run it multiple times, each
time randomly perturbing the inputs (sensors measurements of
MW brightness temperatures). For each realization, y*, where
the index % denotes the index, we perturb the sensor MW
brightness temperatures, y by €2, ~ NEAT - N (0, 1), where
N EAT:is the instrument noise equivalent delta temperature,
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and IV (0, 1) is a normal random number with zero mean and
unit standard deviation, i.e., yi = y+ ei.

We then run MIIDAPS-ALI to produce a retrieval correspond-
ing to the perturbed input, that is z* = f(y* ). The Monte-
Carlo estimate of retrieval error can then be computed as the
standard deviation of all MIIDAPS-ALI realizations.

2) Linear Monte Carlo/Analytic Projection Error Estima-
tion Approach: Linear Monte Carlo/Analytic projection error
estimation approach: In this approach, we use the automatic
differentiation available from the Keras/Tensorflow backprop
algorithm to compute the saliency or gradient of MIIDAPS-AI
outputs with respect to the inputs, J ¢, (4, and then project the
noise realizations (as defined for the Monte-Carlo approach)
from radiometric space to geophysical space, i.e., we multiply
the matrix J ¢, )by the vector of perturbations €l. The analyt-
ical estimate of the retrieval error is then the standard deviation
of those projections.

Fig. 8 shows that the errors computed with the NN-Jacobian
Projection method and those with Nonlinear Monte-Carlo are
very similar. However, both estimated (or predicted) errors un-
derestimate the actual errors (assessed by comparing to truth).
This might be anticipated since the errors estimated with above
two approaches represent only a portion of the actual error in
MIIDAPS-AI products. Other potential error components are
the limited information content of the instrument measurements
(i.e., finite instrument vertical resolution) and irreducible errors
due to the one-to-many/ill-posedness of inverse remote sens-
ing problems. In other words, the projection and Monte-Carlo
methods only assess the random components of MIIDAPS-AI
error due to instrument noise. Actual MIIDAPS-AI retrieval
errors that depend on optimality of the network architecture,
weights (training) as well as instrument information content,
are not assessed by these methods. Nevertheless, the max/min
predicted retrieval error indicates that the information content

of the retrievals provided by retrieval Jacobians exhibit case
dependence.

VI. CONCLUSION

MIIDAPS-ALI is a very efficient retrieval algorithm for mi-
crowave and infrared sensors on both LEO and GEO satellites
and produces simultaneously (in a single retrieval) a suite of
geophysical products. This simultaneous approach is shown
to force the inverted space vector to be physically consistent.
This algorithm leverages modern Al (and ML) techniques and
was developed and optimized using Keras/TensorFlow. Both
the science and efficiency performances of the algorithms were
briefly assessed, using both simulated and real data from joint
polar sounding system (JPSS) and GOES satellites. More ad-
vanced evaluation, digging deeper into the performance of all
the geophysical parameters (e.g., surface parameters such as
sea ice and soil moisture; trace gases such as CO and ozone;
and, cloud/precipitation parameters) inverted by MIIDAPS-AI
was not shown but will be the subject of future reports. We
have shown however that the accuracy and precision of the
atmospheric profiles of temperature and moisture are overall
similar to those of operational algorithms, but with a computa-
tional efficiency gain of 100. This opens the door to a multitude
of possibilities in the future, chief among them, the ability to
process orders of magnitude more observations, from satellites
including smallsats and cubesats.

To build further confidence in the retrievals, the spatial vari-
ability (of geophysical analyses fields retrieved by MIIDAPS-AI
from microwave sensor ATMS) and the inter-parameter corre-
lation of the MIIDAPS-ALI state vector were also assessed and
found to be of acceptable quality. To avoid using the Al-based
optimization as a black box, we showed how the ML retrieval
process operates by computing the temperature and moisture
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sensitivities to the satellite observations (applied to microwave
ATMS), and found that the ML-based Jacobians are very similar
to those sensitivities expected from a 1DVar approach (e.g.,
contribution functions), therefore, giving us trust in the results
and providing evidence that the MIIDAPS-AI algorithm is
extracting the right information content from the appropriate
channels measurements present in the inputs. We also proposed
two ways to quantify the random errors of the retrievals due to
channel noise. Random errors predicted using those methods
underestimated the real total uncertainty because those methods
do not account for other noise sources. The assessments of the
interpretability of MIIDAPS-AI presented in this article were
done more extensively than what is succinctly presented in this
study to keep the size of this high-level overview paper manage-
able. Other more dedicated publications (for more sensors, and
more parameters) will describe more extensive validation work.

The MIIDAPS-AI, because it generates cloud, ice, and pre-
cipitation information, could be used as part of a preprocessing
step for data assimilation to QC satellite data. Additionally,
geophysical parameters currently used as fixed boundary condi-
tions in NWP systems, such as emissivity and trace gases, could
be obtained from MIIDAPS-AL, thereby providing dynamically
varying boundary conditions based on real observational data,
which would be an improvement over the fixed atlases that
are sometimes used. Note that depending on the application or
the NWP system, the emissivity could be used as a standalone
variable to define the surface boundary or could be used as an
atmosphere-cleared signal to derive geophysical surface vari-
ables such as sea-ice, soil moisture, and vegetation. MIIDAPS-
Al is easily expandable to new and hypothetical sensors, as long
as CRTM is also extended for these sensors. An example of
this expansion is described in [22] where a configuration of
many 12U smallsats of microwave sensors called EON-MW was
evaluated for their capabilities and value. Significant efficiency
coupled with good quality products, or at least similar quality to
that obtained with operational systems, and ways to scientifically
explain the results and quantify the errors, makes MIIDAPS-AI
an attractive candidate algorithm for operational (i.e., in real-
time) processing of microwave and infrared sensors data, from
both polar, and geostationary satellites. This will be especially
true in the upcoming era of swarms of smallsats and cubesats,
expected to be deployed in the future, and MIIDAPS-AI provides
part of the answer to address the big data challenge.
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